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Abstract. The quantum modes of a new family of relativistic oscillators are studied by using
the supersymmetry and shape invariance in a version suitable for (1 + 1)-dimensional relativistic
systems. In this way one obtains the Rodrigues formulae of the normalized energy eigenfunctions
of the discrete spectra and the corresponding raising and lowering operators.

1. Introduction

In general relativity, the geometric models play the role of kinetics, helping us to understand
the characteristics of the classical or quantum free motion on a given background. One of the
simplest geometric models in (1 + 1) dimensions is that of the quantum relativistic oscillator
(RO) defined as a free massive scalar particle on the anti-de Sitter static background [1–3].
Recently, we have generalized this model to a family of quantum models of ROs, whose
metrics are one-parameter deformations (i.e. conformal transformations) of the anti-de Sitter
or de Sitter ones [4]. In the case of the deformed anti-de Sitter metrics we have considered
that the backgrounds are, in fact, the universal covering spacetimes of the globally hyperbolic
original ones such that their time coordinates cover the whole real axis [5]. Thus we enssure
the geometric compatibility of all the models given by our one-parameter family of metrics.
As shown in [6], the deformed anti-de Sitter metrics lead to relativistic equivalents of the usual
non-relativistic Pöschl–Teller (PT) problems, while the deformed de Sitter metrics generate
relativistic Rosen–Morse (RM) problems [7]. A remarkable property of these ROs is that all
of them have the same non-relativistic limit in the sense of special relativity, namely just the
usual non-relativistic harmonic oscillator (NRHO) [4].

The Klein–Gordon equation of these models is analytically solvable in the same manner
as the Schrödinger equation of the mentioned well studied non-relativistic problems. This
allows one to study the RO by using the successful methods of supersymmetry and shape
invariance [8] with the minimal changes requested by the specific form of the Klein–Gordon
equation [9]. In this way one can derive the normalized energy eigenfunctions of the discrete
energy spectrum and the form of the shift operators of the energy basis that are involved in the
structure of the dynamical algebras [10].

Here we would like to present a systematic study of our family of ROs based on the
supersymmetry and shape invariance of the relativistic potentials, pointing out the main specific
features of the PT and RM relativistic problems. We believe that this first example of a family
of metrics generating analytically solvable quantum problems could be of interest for further
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investigations concerning the supersymmetry of other solvable relativistic quantum models in
(3 + 1) dimensions [5, 11] or more [12].

We start in section 2 with a short review of the relativistic scalar quantum mechanics
in (1 + 1) dimensions. In section 3 we present the relativistic PT and RM oscillators giving
their energy spectra and the energy eigenfunctions up to normalization factors. The relativistic
supersymmetry and the shape invariance of the relativistic PT and RM potentials are used in
the following section for deriving the definitive form of the normalized energy eigenfunctions
of the discrete energy spectra. Section 5 is devoted to the properties of the shift operators of
the energy bases of our RO. Therein we recover the known shift operators of the PT models
[13] and we write down those of the RM models. We use natural units with h̄ = c = 1.

2. Preliminaries

It is well known that one-particle relativistic quantum mechanics cannot be constructed as
an independent consistent theory because of some difficulties related to the probabilistic
interpretation of the relativistic wavefunctions. For this reason, we consider the relativistic
quantum mechanics as the one-particle restriction of the theory of the scalar quantum field on
curved backgrounds [14, 15].

Let us start with a (1 + 1)-dimensional background with a static local chart (i.e. natural
frame) of coordinates (u0, u1) ≡ (t, u) where the metric tensor defined on the space domain
Du is gµν(u), µ, ν = 0, 1. The one-particle quantum modes of the scalar field φ of the mass
m, minimally coupled with the gravitational field, are given by the Klein–Gordon equation

1√
g
∂µ

(√
ggµν∂νφ

)
+ m2φ = 0 g = | det(gµν)|. (1)

Since in the static charts the energy, E, is conserved, this equation has a set of fundamental
solutions (of positive and negative frequencies),

φ
(+)
E (t, u) = 1√

2E
e−iEtUE(u) φ(−) = (φ(+))∗ (2)

which depend on the static energy eigenfunctions UE . These may be orthonormal (in an usual
or generalized sense) with respect to the relativistic scalar product [14]

〈U,U ′〉 =
∫
Du

duµ(u)U(u)∗U ′(u) (3)

defined by the relativistic weight function of the scalar field, µ = √
g g00.

It is known that in (1 + 1) dimensions any static background has special natural frames,
where the metric is the conformal transformation of the flat one. Starting with any natural
frame (t, u), the space coordinate of the special frame (t, x) reads

x =
∫

duµ(u) + constant (4)

where the constant ensures the condition x(0) = 0. The space domain of the coordinate x

corresponding to Du will be denoted by D. In the special frame we have g̃00(x) = −g̃11(x)

and µ̃(x) = 1 which means that the scalar product (3) becomes just the usual one. Moreover,
it is convenient to denote g̃00 = 1 + v since then the form of the line element in the special
frame,

ds2 = [1 + v(x)](dt2 − dx2) (5)
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gives us directly the relativistic potential, VR = m2v, of the static Klein–Gordon equation,

[
− d2

dx2
+ VR(x)

]
UE(x) = (E2 − m2)UE(x). (6)

Note that in the non-relativistic limit VR/2m becomes just the usual potential of the
corresponding Schrödinger equation.

The linear operators we need will be introduced by using the special frames where the
advantage is that the Hermitian conjugation is just the usual one (since µ̃ = 1). These are the
coordinate and momentum operators,

(XU)(x) = xU(x) (PU)(x) = i
dU(x)

dx
(7)

and the Klein–Gordon operator,

H2 = m21 + ∆[VR] (8)

where H is the Hamiltonian operator defined by HUE = EUE and

∆[V ] = P 2 + V (X). (9)

The whole algebra of observables is that freely generated by the operators X and P as in the
Schrödinger picture of non-relativistic one-dimensional quantum mechanics.

3. Relativistic oscillators

The geometric models of ROs we discuss here are simple systems of test particles freely moving
on static backgrounds which are able to simulate oscillations. This means that there are local
charts of coordinates (t, u) where an observer at u = 0 moving along the direction ∂t observes
an oscillatory geodesic motion. These charts, called proper natural frames, have line elements
[4],

ds2 = g00 dt2 + g11 du2 = 1 + (1 + λ)ω2u2

1 + λω2u2
dt2 − 1 + (1 + λ)ω2u2

(1 + λω2u2)2
du2 (10)

depending on a real parameter λ. Thus one obtains a family of metrics which are conformal
transformations either of the anti-de Sitter metric (as given in [1]) or of the de Sitter one. The
anti-de Sitter metric with λ = −1 is also included in this family. A special case is that of
λ = 0 when we say that the line element

ds2 = (1 + ω2u2)(dt2 − du2) (11)

defines the normal RO. In [4] it is shown that the quantum models with λ � 0 have countable
energy spectra, while for λ > 0 the energy spectra are mixed, with a finite discrete sequence
and a continuous part. All of these models will be presented here in the special frames (t, x)

associated with the proper frames (t, u) defined above. The advantage is that in the special
frames our RO appear either as PT or as RM relativistic systems [6].
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3.1. Relativistic Pöschl–Teller models

Let us consider first the models with λ < 0 when the metrics are conformal transformations of
the anti-de Sitter one. We denote λ = −ε2 and ω̂ = ε ω (with ε � 0) and calculate the space
coordinate of the special frame. According to equation (4) we have

x = 1

ω̂
arcsin ω̂u (12)

while from equation (10) we obtain the line element in this frame,

ds2 =
(

1 +
1

ε2
tan2 ω̂x

)
(dt2 − dx2) (13)

where the space domain isD = (−π/2ω̂, π/2ω̂). We recall that here we consider the universal
covering spacetimes of the globally hyperbolic ones such that t ∈ (−∞,∞). The relativistic
potential,

VPT (k, x) = m2

ε2
tan2 ω̂x = ω̂2k(k − 1) tan2 ω̂x (14)

is of PT type depending on the new parameter

k =
√

m2

ε2ω̂2
+

1

4
+

1

2
(15)

which concentrates all the other ones. In the following we use k instead of m, as the main
parameter of the PT models that will be denoted from now by (k).

The Klein–Gordon equation (6) of the model (k) with the potential (14) can be written as[
− 1

ω̂2

d2

dx2
+
k(k − 1)

cos2 ω̂x

]
U(x) = ν2U(x) (16)

where

ν2 = E2

ω̂2
−

(
1 − 1

ε2

)
m2

ω̂2
= E2

ω̂2
+ (1 − ε2)k(k − 1). (17)

This has only square-integrable solutions,

Uk,n(x) = Nk,n sin2s ω̂x cosk ω̂xF
(−ns, ns + k + 2s, 2s + 1

2 , sin2 ω̂x
)

(18)

for all ns = 0, 1, 2, . . . and 2s = 0, 1 [4, 10]. These define the regular modes whose energy
levels,

E2
k,n = ω̂2[(k + n)2 + (ε2 − 1)k(k − 1)] (19)

depend on the main quantum number, n = 2ns + 2s, which takes even values if s = 0 and odd
values for s = 1

2 . Thus it results that the energy spectrum is countable, having no continuous
part. In particular, for the anti-de Sitter model with ε = 1 we recover the well known result
Ek,n = ω(k + n) [3]. The normalization constants, Nk,n, will be calculated in the next section
by using the supersymmetry and shape invariance [8] of the PT potentials.

Our PT models are well defined for any k ∈ [1,∞) since the limit k → 1 (when m → 0)
has a good physical meaning. The model with k = 1 is interesting since it describes a massless
particle confined to the rectangular infinite well of width π/ω̂. This has the equidistant energy
levels

E1,n = ω̂(n + 1) (20)
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corresponding to the normalized eigenfunctions

U1,n(x) =
√

2ω̂

π
sin(n + 1)

(π

2
− ω̂x

)
n = 0, 1, 2, . . . . (21)

Note that this is a pure relativistic model since its non-relativistic limit (in the sense of special
relativity) does not make sense.

3.2. Relativistic Rosen–Morse models

For λ > 0 the metrics of RO are conformal transformations of the de Sitter metric. Now we
change the significance of ε and put λ = ε2 and ω̂ = εω. Furthermore, from equation (4) we
find

x = 1

ω̂
arcsinh ω̂u (22)

and from equation (10) we obtain the line elements

ds2 =
(

1 +
1

ε2
tanh2 ω̂x

)
(dt2 − dx2) (23)

in special frames where the space domain is D = (−∞,∞). These metrics define relativistic
RM models whose potentials,

VRM(j, x) = m2

ε2
tanh2 ω̂x = ω̂2j (j + 1) tanh2 ω̂x (24)

depend on the parameter

j =
√

m2

ε2ω̂2
+

1

4
− 1

2
. (25)

As in the case of PT models, we consider that j is the main parameter of the RM models,
denoted by (j).

Now the Klein–Gordon equation is[
1

ω̂2

d2

dx2
+

j (j + 1)

cosh2 ω̂x

]
U(x) = ν̂2U(x) (26)

where

ν̂2 = −E2

ω̂2
+

(
1 +

1

ε2

)
m2

ω̂2
= −E2

ω̂2
+ (1 + ε2)j (j + 1). (27)

As in the non-relativistic case, the relativistic RM models have mixed energy spectra with a
finite discrete sequence and a continuous part [4]. The solutions,

Uj,n(x) = Nj,n sinh2s ω̂x cosh−j ω̂xF
(−ns, ns − j + 2s, 2s + 1

2 ,− sinh2 ω̂x
)

(28)

remain square-integrable only if the main quantum number, n = 2ns + 2s (2s = 0, 1), takes
the values n = 0, 1, . . . , nmax < j . Thus it gives a finite discrete energy spectrum included in
the domain [m,m

√
1 + 1/ε2) with the energy levels

E2
j,n = ω̂2[−(n − j)2 + (ε2 + 1)j (j + 1)]. (29)

The definitive form of the normalized energy eigenfunctions of this spectrum will be calculated
in the next section by using the shape invariance of the RM potentials. The continuous energy
spectrum covers the domain [m

√
1 + 1/ε2,∞).

A special case is that of m → 0 (when j → 0). Then the discrete spectrum disappears
while the continuous one becomes [0,∞). In this model the massless test particle moves like
in flat spacetime and, therefore, there is no non-relativistic limit.
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3.3. The normal RO and the non-relativistic limit

Our family of metrics is continuous in λ = 0 [4]. This means that the limits for ε → 0 of
the PT and RM models must coincide. Indeed, according to equations (12) and (22) we find
that in this limit x → u while from equations (15) and (25) it results that for any model with
m �= 0 we have k → ∞, j → ∞ but

lim
ε→0

ε2k = lim
ε→0

ε2j = m

ω
. (30)

Furthermore, we can verify that the finite discrete spectra of the models with λ > 0 become
countable, while the continuous spectra disappear such that all the PT and RM models have
the same limit which is just the normal RO (with λ = 0). The special frame of this model
coincides with the proper one where the metric is defined by equation (11). The relativistic
potential is V0(u) = limε→0 VPT (x) = limε→0 VRM(x) = m2ω2u2 so that the Klein–Gordon
equation, [

− d2

du2
+ m2ω2u2

]
U(0)

n (u) = (E(0)
n

2 − m2)U(0)
n (u) (31)

gives the familiar energy eigenfunctions of the NRHO,

U(0)
n =

(mω

π

)1/4 1√
n!2n

e−mω2u2/2Hn(
√
mωu) (32)

(where Hn are the Hermite polynomials), but relativistic energy levels,

E(0)
n

2 = m2 + 2mω(n + 1
2 ). (33)

In the non-relativistic limit, defined as in special relativity (for m/ω → ∞ and very small
values of E − m), the normal RO becomes the NRHO with the potential V0/2m and usual
energy levels. The non-relativistic limit of the other models, with m �= 0 and λ �= 0, can be
easily calculated if we observe that, according to equations (15) and (25), this is equivalent to
the limit λ → 0 and, in addition, m � ω. Hereby it results that all the RO with m �= 0 have
the same non-relativistic limit like the normal RO of mass m, namely the usual NRHO. On the
other hand, it is interesting that in this way we can show that the parameter λ, or the parameter
ε related to it, does not have a non-relativistic equivalent, since all the terms involving λ vanish
in this limit.

4. Supersymmetry and shape invariance

A relativistic supersymmetric quantum mechanics can be constructed in the same way as the
non-relativistic one. The main problem here is to find the operator which should play the
role of a Hamiltonian. We show that this is just the operator (9) with the relativistic potential
translated with an appropriate constant.

4.1. Supersymmetry

Let us start with a (1 + 1)-dimensional relativistic model with the potential VR giving a finite or
countable energy spectrum. First, we denote the energy levels by E(−)

n and the corresponding
energy eigenfunctions by U(−)

n . Then equation (6) in the special frame can be written as

∆[V−]U(−)
n = d(−)

n U(−)
n n = 0, 1, 2, . . . (34)
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where

V− = VR − (E
(−)
0

2 − m2) (35)

and

d(−)
n = E(−)

n

2 − E
(−)
0

2
. (36)

We have translated the spectrum of ∆ in such a manner as to accomplish the condition d
(−)
0 = 0

we need to define the superpotential [8]

W(x) = − 1

U
(−)
0

dU(−)
0 (x)

dx
. (37)

Then we have V− = W 2 − W ′ (with the notation ′ = ∂x) and the supersymmetric partner
(superpartner) potential of V− reads V+ = W 2 +W ′ = −V− +2W 2. Furthermore, we introduce
the operator

A = −iP + W(X) (38)

which satisfies

[A,A†] = 2W ′(X) (39)

and helps us to write

∆[V−] = A†A ∆[V+] = AA†. (40)

Now, as in the non-relativistic case [8], we can convince ourselves that the spectrum of
the eigenvalue problem

∆[V+]U(+)
n = d(+)

n U(+)
n (41)

coincides with that of equation (34), apart from the eigenvalue d
(−)
0 = 0. Thus we have

d(+)
n = d

(−)
n+1, n = 0, 1, 2, . . . , while the normalized eigenfunctions of ∆[V−] and ∆[V+]

satisfy

AU(−)
n = η

√
d
(−)
n U

(+)
n−1 A†U

(+)
n−1 = η∗

√
d
(−)
n U(−)

n (42)

where η is an arbitrary phase factor.
Hence, we can say that the (1 + 1) relativistic supersymmetric quantum mechanics has the

same main features as the non-relativistic one. It remains for us to study the shape invariance
of the superpartner relativistic potentials.

4.2. Shape invariance

Let us consider the PT model (k) and identify U(−)
n ≡ Uk,n and E(−)

n ≡ Ek,n. Then the
differences (36) are

d(−)
n ≡ dk,n = E2

k,n − E2
k,0 = ω̂2n(n + 2k) (43)

and from equations (35) and (14) we obtain

V−(k, x) = VPT (k, x) + m2 − E2
k,0 = ω̂2[k(k − 1) tan2 ω̂x − k]. (44)
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On the other hand, the normalized ground-state eigenfunction calculated from equation (18),

Uk,0(x) =
(
ω̂2

π

)1/4
[
*(k + 1)

*(k + 1
2 )

]1/2

cosk ω̂x (45)

gives the superpotential W(k, x) = ω̂k tan ω̂x which allows us to find the superpartner of V−,

V+(k, x) = −V−(k, x) + 2W(k, x)2 = ω̂2[k(k + 1) tan2 ω̂x + k]. (46)

Moreover, with this superpotential the operator (38) reads

Ak = −iP + ω̂k tan ω̂X = − cosk ω̂X (iP ) cos−k ω̂X (47)

while from equation (39) we obtain

[Ak,A
†
k] = 2kω̂21 +

1

2k
(Ak + A†

k)
2. (48)

Now we observe that the potentials V−(k) and V+(k) are shape invariant since

V+(k, x) = V−(k + 1, x) + ω̂2(2k + 1). (49)

Consequently, we can identify U(+)
n ≡ Uk+1,n which means that the normalized energy

eigenfunctions satisfy

AkUk,n = √
dk,nUk+1,n−1 A†

kUk+1,n−1 = √
dk,nUk,n (50)

as results from equations (40) with η = 1. Thus we have related the energy eigenfunctions
of the model (k) with those of its superpartner model, (k + 1). In general, we can write any
normalized energy eigenfunction of the model (k) as

Uk,n = 1

ω̂n
√
n!

[
*(n + 2k)

*(2n + 2k)

]1/2

A†
kA

†
k+1 . . .A

†
k+n−1Uk+n,0. (51)

where Uk+n,0 is the normalized ground-state eigenfunction of the model (k + n) given by
equation (45).

For the relativistic RM models we use the same method starting with the model (j) and
denoting U(−)

n ≡ Uj,n and E(−)
n ≡ Ej,n. Then the differences (36) are

d(−)
n ≡ dj,n = E2

j,n − E2
j,0 = ω̂2n(2j − n) (52)

and, according to (24), we have

V−(j, x) = VRM(j, x) + m2 − E2
j,0 = ω̂2[j (j + 1) tanh2 ω̂x − j ]. (53)

From equation (28) we find the normalized ground-state eigenfunction

Uj,0(x) =
(
ω̂2

π

)1/4
[
*(j + 1

2 )

*(j)

]1/2

cosh−j ω̂x (54)

giving the superpotential W(j, x) = ω̂j tanh ω̂x. Hereby we obtain

V+(j, x) = −V−(j, x) + 2W(j, x)2 = ω̂2[j (j − 1) tanh2 ω̂x + j ]. (55)

Now the operator (38) reads

Aj = −iP + ω̂j tanh ω̂X = − cosh−j ω̂X (iP ) coshj ω̂X (56)
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while equation (39) gives

[Aj ,A
†
j ] = 2jω̂21 − 1

2j
(Aj + A†

j )
2. (57)

The potentials V−(j) and V+(j) are shape invariant since

V+(j, x) = V−(j − 1, x) + ω̂2(2j − 1). (58)

Consequently, as in the previous case, we find that the normalized energy eigenfunctions satisfy

AjUj,n = √
dj,nUj−1,n−1 A†

jUj−1,n−1 = √
dj,nUj,n (59)

if we take η = 1 in equations (40). Thus we have obtained the relation between the sets of
energy eigenfunctions of the superpartner models (j) and (j − 1). Moreover, we can also
express the normalized eigenfunctions as

Uj,n = 1

ω̂n
√
n!

[
*(2j − 2n + 1)

*(2j − n + 1)

]1/2

A†
jA

†
j−1 . . .A

†
j−n+1Uj−n,0 (60)

where now Uj−n,0 is the normalized ground-state eigenfunction of the model (j −n) given by
equation (54).

4.3. The normalized energy eigenfunctions

The normalization of the energy eigenfunctions of the PT models may be easily done in the
usual way, but for the RM models there are some technical difficulties. These can be avoided
by using the previous results since equations (51) and (60) are nothing other than the operator
form of the Rodrigues formulae of the normalized eigenfunctions (in our phase convention
with η = 1). Therefore, it remains only to rewrite their expressions in the usual form.

For the PT models we replace the operator (47) in equation (51) which takes the form

Uk,n(x) = (−1)n

ω̂n
√
n!

[
*(n + 2k)

*(2n + 2k)

]1/2

cos−k ω̂x
d

dx

1

cos ω̂x

d

dx
· · ·

· · · 1

cos ω̂x

d

dx
cosk+n−1 ω̂xUk+n,0(x). (61)

Then, according to equations (12) and (45), we obtain the final Rodrigues formula of the
normalized energy eigenfunctions of the PT models in proper frames,

Uk,n(u) =
(
ω̂2

π

)1/4
(−1)n

ω̂n
√
n!

[
*(2k + n)*(k + n + 1)

*(2k + 2n)*(k + n + 1
2 )

]1/2

×(1 − ω̂2u2)−
k−1

2
dn

dun
(1 − ω̂2u2)k+n− 1

2 . (62)

In the same way we can derive the Rodrigues formula for the normalized energy
eigenfunctions of the RM models. By using equations (56) and (60) we find the normalized
energy eigenfunctions of the discrete spectrum in proper frames,

Uj,n(u) =
(
ω̂2

π

)1/4
(−1)n

ω̂n
√
n!

[
*(2j − 2n + 1)*(j − n + 1

2 )

*(2j − n + 1)*(j − n)

]1/2

×(1 + ω̂2u2)
j+1

2
dn

dun
(1 + ω̂2u2)−j+n− 1

2 . (63)
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Of course, as was expected, this formula gives square-integrable functions only for n � nmax.
On the other hand, here the problem of ‘normalization’ of the generalized energy eigenfunctions
of the continuous spectrum remains open since there are no efficient procedures for doing this
as yet.

Hence we have obtained the definitive formulae of the normalized energy eigenfunctions
of our RO corresponding to the discrete energy levels. These can be written now in terms of
Jacobi or Gegenbauer polynomials [16] and even as associated Legendre functions [13, 17],
but only when k and j are integer numbers. In the particular case of the PT model with k = 1
the trigonometric form (21) can be derived from equation (62) by using the properties of the
Tchebyshev polynomials.

In section 3.3 we have seen that the normal RO has the same energy eigenfunctions as the
NRHO. Now, by taking into account that for large arguments, z, we have *(z+ a)/*(z+ b) ∼
z(a−b) and by using equations (30) we verify directly that

lim
ε→0

Uk,n(u) = lim
ε→0

Uj,n(u) = U(0)
n (u). (64)

Because of these properties we can say that the eigenfunctions (62) and (63) represent
relativistic generalizations of the NRHO eigenfunctions, different from that given by the
algebraic method [2].

5. Shift operators

Our models have only one principal quantum number such that in each model we must have a
pair of shift operators, i.e. the raising and lowering operators of the energy basis. In general,
the shift operators are different from those of the supersymmetry apart from the shift operators
of the normal RO that are up to factors just those of the supersymmetry since this model is its
own superpartner.

Let us start with this simplest case since here the energy eigenfunctions are similar to those
of the NRHO. Consequently, we can take over the well known results from the non-relativistic
theory defining the differential operators

(aU)(u) = 1√
2 mω

(
d

du
+ mωu

)
U(u) (65)

(a†U)(u) = 1√
2 mω

(
− d

du
+ mωu

)
U(u). (66)

of the Heisenberg–Weyl algebra. Obviously, they are the desired shift operators which obey
[a,a†] = 1, giving us the operator of number of quanta N = a†a and

X = 1√
2mω

(a† + a) P = −i

√
mω

2
(a† − a). (67)

Moreover, we find the natural limits

lim
ε→0

Ak = lim
ε→0

Aj =
√

2mω a. (68)

For the models with λ �= 0 the shift operators differ from those of supersymmetry. They
can be calculated directly by using the action of the supersymmetry operators and the form
of the normalized energy eigenfunctions derived above. In the case of λ = −ε2, after a few
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manipulations, we find that the shift operators of the PT model (k) can be defined in the proper
frame as

(Ak,(+)Uk,n)(u) = 1

ω̂
√

2k

[
−(1 − ω̂2u2)

d

du
+ ω̂2u(k + n)

]
Uk,n(u) (69)

(Ak,(−)Uk,n)(u) = 1

ω̂
√

2k

[
(1 − ω̂2u2)

d

du
+ ω̂2u(k + n)

]
Uk,n(u). (70)

Their shifting action is

Ak,(+)Uk,n = C
(+)
k,nUk,n+1 Ak,(−)Uk,n = C

(−)
k,n Uk,n−1 (71)

where

C
(+)
k,n = 1√

2k

[
(2k + n)(k + n)

k + n + 1

]1/2 √
n + 1 (72)

C
(−)
k,n = 1√

2k

[
(2k + n − 1)(k + n)

k + n − 1

]1/2 √
n. (73)

If we rewrite the action of the operators (69) and (70) in the special frame (t, x) then we recover
the result of [13]. Furthermore, we can verify the commutation relation

[Ak,(−),Ak,(+)]Uk,n =
(

1 +
n

k

)
Uk,n (74)

and the identity

2kAk,(+)Ak,(−)Uk,n = n(2k + n − 1)Uk,n (75)

which is just the Klein–Gordon equation in operator form [10]. In the limit ε → 0 we have
[9]

lim
ε→0

Ak,(+) = a† lim
ε→0

Ak,(−) = a. (76)

With the same procedure we find the shift operators of the RM model (j) in the proper
frame,

(Aj,(+)Uj,n)(u) = 1

ω̂
√

2j

[
−(1 + ω̂2u2)

d

du
+ ω̂2u(j − n)

]
Uj,n(u) (77)

(Aj,(−)Uj,n)(u) = 1

ω̂
√

2j

[
(1 + ω̂2u2)

d

du
+ ω̂2u(j − n)

]
Uj,n(u) (78)

which have the action

Aj,(+)Uj,n = C
(+)
j,nUj,n+1 Aj,(−)Uj,n = C

(−)
j,n Uj,n−1 (79)

where

C
(+)
j,n = 1√

2j

[
(2j − n)(j − n)

j − n − 1

]1/2 √
n + 1 (80)

C
(−)
j,n = 1√

2j

[
(2j − n + 1)(j − n)

j − n + 1

]1/2 √
n. (81)

They obey the commutation rule

[Aj,(−),Aj,(+)]Uj,n =
(

1 − n

j

)
Uj,n (82)
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and give us the operator form of the Klein–Gordon equation for discrete levels,

2jAj,(+)Aj,(−)Uj,n = n(2j − n + 1)Uj,n. (83)

Finally, we find that

lim
ε→0

Aj,(+) = a† lim
ε→0

Aj,(−) = a. (84)

We must specify that the shift operators of the models with λ �= 0 have two important
properties; namely, they are not pure differential operators and, in addition, the raising and
lowering operators are not adjoint to each other, i.e. Ak,(±) �= (Ak,(∓))

† and similarly for the
RM models.

6. Comments

In this paper we have studied the quantum modes of a family of (1 + 1) RO by using the
methods of a supersymmetric relativistic quantum mechanics similar to the well known non-
relativistic one. This was possible since the form of the Klein–Gordon equation in the special
frames is very close to that of the Schrödinger equation, allowing us to introduce the relativistic
potentials and to exploit their shape invariance.

However, our relativistic theory has some new interesting features due to the fact that
the mass is involved in the formula of the energy levels and, at the same time, play the role
of a coupling constant. For this reason there are some regularities leading to a very simple
parametrization such that for any pair of superpartner models we have either /k = ±1 or
/j = ∓1. Thus k and j simulate the behaviour of quantum numbers even though they cannot
be considered as eigenvalues of self-adjoint operators [9]. On the other hand, the models
with superpartner potentials can be seen as having particles of different masses moving on
the same background. The consequence is that the masses of the sets of superpartner PT or
RM models appear as being quantized according to the formulae m2

k = ε2ω̂2k(k − 1) and
m2

j = ε2ω̂2j (j + 1), respectively. These remarkable properties helped us to easily write down
the Rodrigues formulae of the normalized energy eigenfunctions of the discrete spectra and to
find the corresponding shift operators.

In conclusion we can say that our family of models brings together the main solvable
problems with parity-symmetric potentials of the one-dimensional quantum mechanics,
interpreted as relativistic oscillators in the sense that all of these models (apart from those
with k = 1 and j = 0) lead to the NRHO in the non-relativistic limit.
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